

Evaluating Marine Protected Areas

Mark Carr,
Dan Malone and
Emily Saarman
Dept Ecology & Evolutionary Biology
UC Santa Cruz

The Partnership for Interdisciplinary Studies of Coastal Oceans

Evaluating MPAs

Why

Where

How

What

When

Why Evaluate MPAs?

1. Required by MLPA

The law requires that the master plan include "[R]ecommendations for monitoring, research, and evaluation...to assist in adaptive management of the MPA network..." (FGC Section 2856(a)2(H))

2. Adopted Goals of the Central Coast Regional Stakeholder Group

Goal 5 - 2. ...develop objectives, a long-term monitoring plan that includes standardized biological and socioeconomic monitoring protocols, and a strategy for MPA evaluation...

3. Given limited resources, any management approach comes with costs:

- detracts from alternative approaches
- redirects resources (financial and human)

Why Evaluate MPAs?

- 4. If ineffective and without evaluation, provides false sense of security
 - jeopardizes resource, especially if other existing regulations are relaxed
- 5. Critical to refining design and adaptive management:
 - the sooner benefits/costs determined, the more rapidly aspects of design can be refined
- 6. Goals common to evaluation and application
 - e.g., EBM and fisheries application

Where do you Evaluate?

Diving surveys 2007-2008

Where do you evaluate?

PISCO Kelp Forest Surveys

- MPA
- reference

California MPAs

- Marine Reserve
- Marine Conservation Area
- Marine Rec. Mgmt. Area
- California State Waters

Where do you evaluate?

Example schematic diagram of stratified random permanent sampling design.

How do you evaluate?

Kelps & large mobile inverts:

density

2 m

30 m

Algae & inverts: % cover

Depends on goals and objectives of MPA:

conservation

- biodiversity
- structure and function of ecosystem

fisheries management

- buffer, spawning source (replenish unprotected populations)
- baseline, reference areas to distinguish human impacts from natural variation

Ecological Parameters to estimate:

Parameters to estimate:

Population

- size / age structure
- larval production
- density (i.e. abundance)
- ecological role

Community

- structure: diversity, composition
 focal species (threatened, indicator)
- function: keystone, trophic and other interactions, habitat engineers

Ecosystem

productivity, connectivity

Why Measure size?

Vermilion Rockfish, Sebastes miniatus

Size Frequency Comparisons

Size structure and larval production

Inside MPA

Fish Density Comparison

Blue Rockfish

Fish Density Comparison

Fish per transect (60m2)

Point Lobos SMR

Big Creek SMR

Point Sur SMR

Point Buchon SMR

Parameters to estimate:

Population

- size / age structure
- density (i.e. abundance)
- larval production
- ecological role

Community

- structure: diversity, composition focal species (threatened, indicator)
- function: keystone, trophic and other interactions, habitat engineers

Ecosystem

productivity, connectivity

Invertebrate Community Comparison

Number per transect (60m2)

Point Lobos SMR

Big Creek SMR

Point Sur SMR

Point Buchon SMR

Kelp Community Comparison

Point Lobos SMR

Big Creek SMR

Point Sur SMR

Point Buchon SMR

Parameters to estimate:

Population

- density (i.e. abundance)
- size/age structure
- larval production
- trajectory of population size

Community

- structure: diversity, composition
 focal species (threatened, indicator)
- function: keystone, trophic and other interactions, habitat engineers

Ecosystem

• productivity, connectivity

Attributes of Ecosystems - To Evaluate

Structure

• Similar to community structure plus habitat structure

Functions

- Productivity
- Trophic interactions
- Other species interactions (e.g., kelp produces habitat)
- Nursery habitat
- Connectivity larval production and export

Habitat Comparison

Point Lobos SMR

■ Bedrock

■ Boulder■ Cobble

■ Sand

Evaluation - Conclusions

- Complex, costly, but these are relative and doable
- Must be initiated as quickly as possible
- Must have realistic expectations of rate, scale and magnitude of responses
- Multiple MPAs are better than one
- Must respond to feedback adaptively
- Requires multiple sampling approaches
- Requires collaboration among agency, academia, and user groups